
Developing Advanced Security Concurrent Separation Logic (ASecCSL) 1

Toby Murray

School of Computing and Information Systems, University of Melbourne

Email: toby.murray@unimelb.edu.au

Navid Abapour

Department of Computer Science, University of Mohaghegh Ardabili

Email: navidabapour@student.uma.ac.ir

Abstract

By invention of novel concurrency paradigms and computable semantics, programs with

modern architectures need to be based on the logical systems that support them from

different dimensions. Considering it’s simplicity and powerful structure, Security Concur-

rent Separation Logic (SecCSL) can be an outstanding system for these types of programs.

SecCSL can get used for proving properties of program, which are related to information

flow. Utilizing an exclusive relational assertion semantics, discerning sensitivity of location

and value, and providing a clear soundness proof are features that SecCSL circulates around

them. In this paper Advanced Security Concurrent Separation Logic (ASecCSL) is pre-

sented as a collection of improvements for SecCSL, which along with injecting probability

to SecCSL, it is trying to provide an adaptive attitude for quantitative information flow.

Keywords: Information Flow and Leakage, Noninterference, Probabilistic Programs

1 Introduction

Probabilistic primitives are giving us the chance to implement complex constructions in pro-
grams; so, pushing the edges of languages and logical systems into probabilistic computation
frameworks, apart from creating more abilities, can significantly increase the security level of
programs. In the past, by using randomized and distributional approaches, the programs had
whether special probability distributions for input or there was a set of random moves for a
specified input. Despite of mixing these two approaches nowadays, there are limited numbers
of models that avoid specifications of systems and their focus is on concrete systems, and they
ignore pure non-determinism or non-probabilistic by using frameworks like Probabilistic Ab-
stract Interpretation (PAI) for producing concrete semantics with order-theoretic. Furthermore,
connecting Markov Decision Processes and expectation transformer semantics of probabilistic
Guarded Command Language is another way to both create outstanding flexibility in checking
formal probabilistic semantics and express randomized algorithms in the program’s flow. Proba-
bilistic Type Theory can be another tool to develop new ideas about probabilistic programming
e.g. for connecting formal semantic interpretation and syntactic structure.

1 This manuscript is the report of a simple prototype development from Navid Abapour (B.Sc.) under
supervision of Toby Murray. (Last Update: October, 2021)

1

2 Toby Murray, Navid Abapour

So, according to these issues and ideas, we need a logical system to focus on security as well as
nondeterminism. From security aspect, probabilistic programs can use control flow graphs with pro-
gram’s translations in a structured language to check the secure information flow in multiple elements.
Also, clearly probabilistic noninterference and noninterference under refinement are outputs of utilizing
probabilistic choice and nondeterminism in the language, but measuring the leakage of information can
be a better idea to ensure the security investigation of information flow.

Security Concurrent Separation Logic (SecCSL) is a special type of logic that apart from it’s strength
and supporting arrays and pointers, it is significantly simple; by executing with symbolic automated,
it is able to verify information flow security for a subset of C language automatically via SecC verifier.
Despite of the most similar information flow logical systems, SecCSL has a relational assertion semantic
for increasing flexibility in feasible automation, along with proving a clear soundness proof for the rules,
which is formalized in Isabelle/HOL. The property proof mechanism behind SecCSL, is based on the
timing-sesitive security, and Γ is a security typing context that SecCSL use it to track the value
sensitivity, and value-dependent predicates are helping to show the location sensitivity.

On the other hand, Security Concurrent Separation Logic has a totally deterministic language se-
mantics for programs, and there is no way for programs to e.g. use randomness. As a result, the
definition of information flow security is completely strict and summarized in revealing no information
at all. Thus, SecCSL has the potential to get enhanced, and with ASecCSL we demonstrate several
cases of improvements for SecCSL:

(I) Initially, we add randomness to Security Concurrent Separation Logic’s language semantics by
applying nondeterministic models and probabilistic choice.

(II) According to small-step model of operational semantics in SecCSL, the language’s semantics is
turning into probabilistic type.

(III) Eventually, in order to capture the concerns about quantitative information flow in probabilistic
language semantics in ASecCSL, a suitable definition is provided.

2 Adding Randomness to SecCSL

In addition to applying new changes to sequence proof rule, the probabilistic choice’s rule should get
specified. By showing security type with δ, infix operator non-deterministically chooses to execute one
of its two operands ci and cj . In fact, operator executes ci with probability p, and cj with probability
1− p.

` ` {P}c1{R} ` ` {R}c2{Q}
` ` {P} c1 p δ c2 {Q}

PROB CHOICE

Considering type unit and supp(`) = {i | `(i) 6= unit} , we are going to define compatibility of `1
and `2 like this:

∀i ∈ supp(`1) ∩ supp(`2), `1(i) = `2(i) =⇒ `1 ⇓ `2 3 M1⇓ `2, (M1 	`2) ⇓M2

If we consider union context as `1 ⊕ `2, then difference context can shown as:

`1 	 `2 : i /∈ supp(`2)⇒ i 7→ `1(i)

Therefore, the Sequential Composition can get modified so that it can be able to support more flexibility
of non-determinism:

` ` {P}c1{R} `1 ` c1 : M1 ` ` {R}c2{Q} `2 ` c2 : M2

`1 ⊕ (`2 	 M1) ` c1; c2 : (M1 	 `2)⊕ M2
SEQ

Developing the Advanced Security Concurrent Separation Logic (ASecCSL) 3

3 Modifying the Command Semantics

Denote the standard list operations of reading the first element of a list and removing the first element
of a list as head and tail, respectively. Given a refiner µ, the value head(µ(δ)) is used to resolve the
next choice annotated with type δ. Also, the command’s vectors are shown by ~c = 〈C0 ... Cn−1〉 that
consist of program’s thread pools.

head(µ(δ)) = i µ′ = µ[δ := tail(µ(δ))]

(run c1 p δ c2, µ, L, s, h)
σ−→ (stop ci, µ′, L′, s′, h′)

<ci, µ, L, s, h> −→ <~c, µ′, L′, s′, h′>

<〈C0...Cn−1〉, µ, L, s, h> −→i
σ(i,n) <〈C0...Ci−1 ~c Ci+1...Cn−1〉, µ′, L′, s′, h′>

<ci, µ, L, s, h> −→ <~c, µ′, L′, s′, h′>

<〈C0...Cn−1〉, µ, L, s, h> −→i
1
n

<〈C0...Ci−1 ~c Ci+1...Cn−1〉, µ′, L′, s′, h′>

S′ = S(x 7−→ [[e]]s)

<runx := e, µ, L, s, h>
<τ>−−−→1 <stopµ′, L, s′, h>

[[e]]s /∈ dom (h)

<runx := [e], µ, L, s, h>
<τ>−−−→1 abort

[[e]]s ∈ dom (h) s′ = s(x 7−→ h([[e]]s))

<runx := [e], µ, L, s, h>
<τ>−−−→1 <stopµ,L, s′, h>

[[e1]]s /∈ dom (h)

<run [e1] := e2, µ, L, s, h>
<τ>−−−→1 abort

[[e1]]s ∈ dom (h) h′ = h([[e1]]s 7−→ [[e2]]s)

<run [e1] := e2, µ, L, s, h>
<τ>−−−→1 <stop µ′, L, s, h′>

l ∈ L L′ = L ∪ {l}
<run lock l, µ, L, s, h>

<τ>−−−→1 <stop µ′, L′, s, h>

l /∈ L L′ = L ∪ {l}
<run unlock l, L, s, h>

<τ>−−−→1 (stop µ,L′, s, h)

<run c1, µ, L, s, h>
σ−→1 abort

<run c1; c2, µ, L, s, h>
σ−→1 abort

<run c1, µ, L, s, h>
σ−→1 abort

<run c1 ‖ c2 , µ, L, s, h>
<1>.σ−−−−→1 abort

<run c1, µ, L, s, h>
σ−→1 <stop µ′, L′, s′, h′> j ∈ [1, n] s ` Cj

<tuni=1 Ci | pi → (run c1; c2, µ, L, s, h)>
σ−→p̃j <run cj , µ′, L′, s′, h′>

<run c1, µ, L, s, h>
σ−→1 <run c′1, µ

′, L′, s′, h′> j ∈ [1, n] s ` Cj
<tuni=1 Ci | pi → (run c1; c2, µ, L, s, h)>

σ−→p̃j <run c′1; c2, µ
′, L′, s′, h′>

<run c1, µ, L, s, h>
σ−→1 <stop µ′, L′, s′, h′> j ∈ [1, n] s ` Cj

<run ci, µ, L, s, h>
σ−→p̃j <run c′i, µ

′, L′, s′, h′>

<tuni=1 Ci | pi → (run c1 ‖ c2, µ, L, s, h)>
<1> σ−−−−→p̃j <run c′j , µ

′, L′, s′, h′>

4 Toby Murray, Navid Abapour

<run c1, µ, L, s, h>
σ−→1 <run c′1, µ

′, L′, s′, h′> j ∈ [1, n] s ` Cj
<run ci, µ, L, s, h>

σ−→p̃j <run c′i, µ, L
′, s′, h′>

<tuni=1 Ci | pi → (run c1 ‖ c2, µ, L, s, h)>
<1> σ−−−−→p̃j <run c′1 ‖ c2, µ′, L′, s′, h′>

<tuni=1 Ci | pi → (run c2 ‖ c1, µ, L, s, h)>
<1> σ−−−−→p̃j <run c2 ‖ c′1, µ′, L′, s′, h′>

if s � b then c′ = c1 else c′ = c2 j ∈ [1, n] s ` Cj
<tuni=1 Ci | pi → (run if b then ci else cj , µ, L, s, h)>

<τ>−−−→p̃j <(run c′, µ, L, s, h)>

4 Developing the Definition of QIF for SecCSL

From non-determinism approach, a program with ability to start from initial state e and end up to e′

can cover the noninterference property, if for all e1(l) = e2(l), achieving a state e2 can be accessible,

such that the program which can start from e2 and end up at e′2 with regards to e1(l) = e2(l)
′ be

able to terminate with success. More specifically, the Sabelfeld’s results on bisimulation can get used

to strength the confidentiality: A PER (Partial Equivalence Relation) like R is a σ-probabilistic low-

bisimulation on program’s commands, and ~c1R ~c2 iff

∀ s1 =` s2.<~c1, µ, L, s1, h> −→ <~c′1, µ
′, L′, s′1, h

′> =⇒ ∃~c′2, s′2.<~c2, µ, L, s2, h> −→ <~c′2, µ
′, L′, s′2, h

′>

Such that:
∑
{p|<~c1, µ, L, s1, h> −→p <~c3, µ, L, s, h>, ~c3 ∈ [~c′1]R , s =` s

′
1} =∑

{p|<~c2, µ, L, s2, h> −→p <~c3, µ, L, s, h>, ~c3 ∈ [~c′2]R , s =` s
′
2}

Hence: ~c′1 R
~c′2 , s

′
1 =` s

′
2

~c is σ-secure ⇐⇒ ~c ∼σ` ~c , ~c ≈` ~c2 ⇐⇒ ∀σ.~c1 ∼σ` ~c2, ~c is scheduler-independent secure ⇐⇒ ~c ≈` ~c

In the SecCSL, a program is secure, iff it leaks no information at all. Also, noninterference is

qualitative property, and security of a probabilistic program, which is based on a logical system that

limiting it self to noninterference will have critical vulnerabilities; so, creating structural relations

between security and leakage is going to be highly effective against adversary’s attacks. By assuming

x ∈ X and y ∈ Y , p(x, y) is their joint distribution, let Â denote the randomness of input/output

variable A and l̂′ as an output observation random variable. Several concepts need to get clarify before

continuing, and it can be done by letting X to has a prior π, along with a channel (X , Y, C):

prior vulnerability V (π) = maxx∈X π[x]

post-prior vulnerability V (π, C) =
∑

y∈Y maxx∈X π[x]C[x, y]

Developing the Advanced Security Concurrent Separation Logic (ASecCSL) 5

min-entropy H∞(π) = − log V (π)

conditional min-entropy H∞(π, C) = − log V (π, C)

min-entropy leakage I∞(π, C) = H∞(π)−H∞(π, C)

Now we can show secure information flow by realizing the leakage (L) in mutual information between

l̂′ and ĥ given the knowledge of l̂ as a formal relation:

L(l̂′; ĥ|l̂) = I∞(π, C)(l̂′|l) 3 L(l̂′; ĥ) =
∑

x

∑
y p(x, y) log2

p(x,y)
p(x)p(y)

L(l̂′; ĥ|l̂) = I∞(π, C)(l̂′|l̂) + I∞(π, C)(ĥ|l̂)− I∞(π, C)(l̂′, ĥ|l̂)

L(l̂′; ĥ|l̂) = I∞(π, C)(ĥ|l̂)− I∞(π, C)(ĥ|l̂′, l̂)

References

C. Mu and D. Clark, ”Quantitative Analysis of Secure Information Flow via Probabilistic Se-

mantics,” 2009 International Conference on Availability, Reliability and Security, 2009, pp. 49-57.

A. Di Pierro and H. Wiklicky, ”An operational semantics for probabilistic concurrent constraint

programming,” Proceedings of the 1998 International Conference on Computer Languages (Cat.

No.98CB36225), 1998, pp. 174-183.

F. Dahlqvist and D. Kozen, “Semantics of Higher-Order Probabilistic Programs with Condition-

ing,” Proc. ACM Program. Lang., vol. 4, no. POPL, Dec. 2019.

D. Huang and G. Morrisett, “An Application of Computable Distributions to the Seman-

tics of Probabilistic Programming Languages,” in Programming Languages and Systems, 2016,

pp. 337–363.

M. Sabok, S. Staton, D. Stein, and M. Wolman, “Probabilistic Programming Semantics

for Name Generation,” Proc. ACM Program. Lang., vol. 5, no. POPL, Jan. 2021.

A. Di Pierro, C. Hankin, and H. Wiklicky, “Probabilistic Semantics and Program Analy-

sis,” in Proceedings of the Formal Methods for Quantitative Aspects of Programming Languages,

and 10th International Conference on School on Formal Methods for the Design of Computer,

Communication and Software Systems, 2010, pp. 1–42.

6 Toby Murray, Navid Abapour

Staton, S., Yang, H., Heunen, C., Kammar, O., and Wood, F.D. (2016). Semantics for

probabilistic programming: higher-order functions, continuous distributions, and soft con-

straints. 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 1-10.

D. Kozen, ”Semantics of probabilistic programs,” 20th Annual Symposium on Founda-

tions of Computer Science (sfcs 1979), 1979, pp. 101-114.

K. R. O’Neill, M. R. Clarkson and S. Chong, ”Information-flow security for interactive

programs,” 19th IEEE Computer Security Foundations Workshop (CSFW’06), 2006, pp. 12

pp.-201.

T. Amtoft and A. Banerjee, “A Semantics for Probabilistic Control-Flow Graphs,” ArXiv,

vol. abs/1711.02256, 2017.

F. Gretz, J.-P. Katoen, and A. McIver, “Operational versus weakest pre-expectation se-

mantics for the probabilistic guarded command language,” Performance Evaluation, vol. 73, pp.

110–132, 2014.

H. Jifeng, K. Seidel, and A. McIver, “Probabilistic models for the guarded command lan-

guage,” Science of Computer Programming, vol. 28, no. 2, pp. 171–192, 1997.

R. Cooper, S. Dobnik, S. Larsson, and S. Lappin, “Probabilistic Type Theory and Natu-

ral Language Semantics,” Linguistic Issues in Language Technology, vol. 10, 2015.

P. Mardziel, M. S. Alvim, M. Hicks and M. R. Clarkson, ”Quantifying Information Flow

for Dynamic Secrets,” 2014 IEEE Symposium on Security and Privacy, 2014, pp. 540-555.

M. R. Clarkson, A. C. Myers, and F. B. Schneider, “Quantifying information flow with

beliefs,” J. Comput. Secur., vol. 17, pp. 655–701, 2009.

Clarke, D., and Keller, B. Efficiency in Ambiguity: Two Models of Probabilistic Seman-

tics for Natural Language, IWCS, 2015.

Y. Kawamoto, K. Chatzikokolakis, and C. Palamidessi, “On the Compositionality of Quantitative

Developing the Advanced Security Concurrent Separation Logic (ASecCSL) 7

Information Flow,” ArXiv, vol. abs/1611.00455, 2017.

D. Volpano and G. Smith, “Probabilistic Noninterference in a Concurrent Language,” J.

Comput. Secur., vol. 7, no. 2–3, pp. 231–253, Mar. 1999.

D. Volpano and G. Smith, “Probabilistic noninterference in a concurrent language,” in

Proceedings of the Computer Security Foundations Workshop, Jul. 1998, pp. 34–43.

A. Sabelfeld and D. Sands, ”Probabilistic noninterference for multi-threaded programs,”

Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-13, 2000, pp. 200-214.

R. Pardo, W. Rafnsson, C. Probst, and A. Wasowski, “Privug: Quantifying Leakage us-

ing Probabilistic Programming for Privacy Risk Analysis,” ArXiv, vol. abs/2011.08742, 2020.

A. Sabelfeld, “Confidentiality for Multithreaded Programs via Bisimulation,” in Perspec-

tives of System Informatics, 2003, pp. 260–273.

A. Aldini and A. Di Pierro, “A Quantitative Approach to Noninterference for Probabilis-

tic Systems,” Electronic Notes in Theoretical Computer Science, vol. 99, pp. 155–182, 2004.

G. Smith and D. Volpano, “Secure Information Flow in a Multi-Threaded Imperative

Language,” in Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, 1998, pp. 355–364.

A. Popescu, J. Hölzl, and T. Nipkow, “Formalizing Probabilistic Noninterference,” in Cer-

tified Programs and Proofs, 2013, pp. 259–275.

G. Smith, “Improved typings for probabilistic noninterference in a multi-threaded language,”

Journal of Computer Security, vol. 14, pp. 591–623, Dec. 2006.

